Citation: Artion Kashuri, Rozana Liko, Silvestru Sever Dragomir. New generalized integral inequalities with applications[J]. AIMS Mathematics, 2019, 4(3): 984-996. doi: 10.3934/math.2019.3.984
[1] | S. M. Aslani, M. R. Delavar and S. M. Vaezpour, Inequalities of Fejér type related to generalized convex functions with applications, Int. J. Anal. Appl., 16 (2018), 38-49. |
[2] | F. X. Chen and S. H. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705-716. doi: 10.22436/jnsa.009.02.32 |
[3] | Y. M. Chu, M. A. Khan, T. U. Khan, et al. Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305-4316. doi: 10.22436/jnsa.009.06.72 |
[4] | M. R. Delavar and M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities, SpringerPlus, 5 (2016), 1-9. doi: 10.1186/s40064-015-1659-2 |
[5] | S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95. |
[6] | G. Farid and A. U. Rehman, Generalizations of some integral inequalities for fractional integrals, Ann. Math. silesianae, 31 (2017), 14. |
[7] | M. A. Khan, Y. M. Chu, A. Kashuri, et al. New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Space., 2018 (2018), Article ID 6928130. |
[8] | W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766-777. doi: 10.22436/jnsa.009.03.05 |
[9] | C. Luo, T. S. Du, M. A. Khan, et al. Some k-fractional integrals inequalities through generalized λ_{Φm}-MT-preinvexity, J. Comput. Anal. Appl., 27 (2019), 690-705. |
[10] | M. V. Mihai, Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus, Tamkang J. Math, 44 (2013), 411-416. doi: 10.5556/j.tkjm.44.2013.1218 |
[11] | S. Mubeen and G. M. Habibullah, k-Fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89-94. |
[12] | O. Omotoyinbo and A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1 (2014), 1-12. |
[13] | M. E. Özdemir, S. S. Dragomir and C. Yildiz, The Hadamard's inequality for convex function via fractional integrals, Acta Math. Sci., 33 (2013), 153-164. |
[14] | M. Z. Sarikaya and F. Ertuğral, On the generalized Hermite-Hadamard inequalities, 2017. Available from: https://www.researchgate.net/publication/321760443. |
[15] | M. Z. Sarikaya and H. Yildirim, On generalization of the Riesz potential, Indian J. Math. MathematicalSci., 3 (2007), 231-235. |
[16] | E. Set, M. A. Noor, M. U. Awan, et al. Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 1-10. doi: 10.1186/s13660-016-1272-0 |
[17] | H. Wang, T. S. Du and Y. Zhang, k-fractional integral trapezium-like inequalities through (h,m)-convex and (α,m)-convex mappings, J. Inequal. Appl., 2017 (2017), 1-20. doi: 10.1186/s13660-016-1272-0 |
[18] | B. Y. Xi and F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functionswith applications to means, J. Funct. Spaces Appl., 2012 (2012), Article ID 980438. |
[19] | X. M. Zhang, Y. M. Chu and X. H. Zhang, The Hermite-Hadamard type inequality of GA-convex functions and its applications, J. Inequal. Appl., 2010 (2010), Article ID 507560. |
[20] | Y. Zhang, T. S. Du, H. Wang, et al. Extensions of different type parameterized inequalities for generalized (m,h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl., 2018 (2018), 1-30. |